
Chapter 4 

 

Supersymmetric Quantum Mechanics on the 2-sphere 

 

Appendix 4(i) 

  Complex Manifolds [12], [13] 

A complex manifold M is a differentiable manifold which can be covered by a set of complex coordinate 

patches, and where the coordinate transformations on the overlap between the patches are holomorphic. On a 

complex manifold the cotangent space decomposes into the sum of a holomorphic and an anti-holomorphic 

cotangent space, so p-forms may be treated as (q, r)-forms, which q and r are the holomorphic and anti-

holomorphic degrees respectively, and p = q + r. The exterior derivative on a complex manifold splits naturally 

into  

    

 

where , the holomorphic derivative map (q, r)-forms to (q+1, r)-forms and , the anti-holomorphic derivative 

maps (q, r)-forms to (q, r+1)-forms. The nilpotence of the exterior derivative implies the relations 

 

    . 

 

The Hodge Star can now be used to define the adjoint operators 

 

     ,   

 

so that in general on a complex manifold there are three different Laplacians: 

 

    ,  ,  . 

 

On a complex manifold a Hermitean metric may be defined 

 

    

 

where  is a positive definite Hermitean matrix for each z. 

The associated (1, 1)-form 

 

    



is called the Kähler form. A manifold with closed Kähler form, , is known as a Kähler manifold. An 

important property of Kähler manifolds is that the three different Laplacians defined on them are equal up to a 

constant. 

    . 

 

This relation leads to Hodge duality 

 

    

 

where  are the Hodge Numbers of M, the dimension of harmonic (p, q)-forms. In terms of 

supersymmetry the fact that the different Laplacians are equal means that the two supersymmetry operators can 

be split into four 

   ,   ,    ,  

 

which satisfy the supersymmetry algebra 

 

   ;  ,  , 

 

so that the non-zero energy solutions form quadruplets under supersymmetry rather than doublets, while the 

zero energy solutions are still singlets. Poincare duality doubles the degeneracy of excited states to eightfold. 

This does not, however, affect the analysis of section 3.1 where a Killing Vector was introduced into the 

Hamiltonian, as a Killing Vector is necessarily real so the degeneracy due to supersymmetry is the same 

whether or not the manifold is Kähler. 

On a compact complex manifold of n complex dimensions the volume form V is proportional to the n-th power 

exterior product of the Kähler form 

     . 

 

If the manifold is Kähler this relationship along with the Kähler condition, , implies that  is a 

representative of the cohomology of the manifold for all k,  . The Kähler condition implies  is 

closed, but if it was exact, , by Stokes Theorem, the volume would have to be zero 

 

   . 

 

In virtually all of the following, complex coordinates will be used, as this results in considerable 

simplifications. The functions which are defined will usually be written with arguments which are holomorphic, 

this is an abbreviation, i.e.  . None of the functions are actually holomorphic. 



4. Supersymmetric Quantum Mechanics on the 2-sphere 

The simplest non-trivial illustrations of Witten’s ideas about fixed point theorems and supersymmetric 

quantum mechanics is on the 2-sphere. In this section the supersymmetric Schrödinger Equation on the 2-

sphere is solved; the solutions form multiplets under the isometry group SU(2). An infinitesimal generator 

of an isometry, a Killing Vector, is then introduced into the supersymmetry algebra as in section 3. This 

breaks the symmetry under the isometry group and leads to a new Hamiltonian which cannot be solved 

exactly for excited states, though zero energy solutions can be found. The zero energy solutions are related 

to the topology of the 2-sphere in the way expect from Witten’s paper [1]. Perturbation theory corrections to 

the spectrum of the excited states are calculated. The asymptotic regime is also examined and related to 

Witten’s analysis. Finally, the various approximations to the energy level are compared to those found 

numerically by a computer program. 

 

 

4.1 The 2-sphere 

As a complex manifold the 2-sphere is equivalent to . It can therefore be defined in terms of two 

homogeneous complex coordinates  and  with points identified which are equal up to a scaling by a 

complex number. The 2-sphere can be covered with two patches by using the inhomogeneous coordinates 

     everywhere except  

    everywhere except   . 

A metric may be put on the 2-sphere by stereographic projection. In terms of the coordinates z, this is 

 

      . 

 

The group of metric preserving rotations in two flat complex dimensions is U(2). The infinitesimal 

generators of this group may be spanned by the operators 

 

  ,   ,  ,  

 

The isometry group of the 2-sphere is SU(2). The generators of this group may be obtained from the 

generators of U(2) by using the chain rule to rewrite them in terms of the inhomogeneous coordinate z. 

 

    

 



    

 

    

 

These three operators,  and the two ladder operators , form a basis for SU(2). The operator 

  is equal to  and so doesn’t give anything new. The freedom to scale the homogeneous 

coordinates on the sphere by a complex number has removed a U(1) factor from the isometry group. 

The commutation relations of the SU(2) generators are 

 

    ,   ,  

 

Rewriting in terms of  and  gives 

 

       

 

       

 

and the commutation relations 

 

     run over  

 

 

4.1.1 The Ordinary Laplacian 

As on the 2-torus the 4x4 matrix notation for operators will be used. Wavefunctions on the sphere will be of the 

form 

   

 

and will be denoted by the 4x1 column matrix    . 

Using this notation the holomorphic and anti-holomorphic derivatives may be written as 

 



     

 

     

 

and by applying the Hodge Star Map their adjoints may be found: 

 

   

 

   

 

where   means that  acts on the product of    and the wavefunction. 

Because the 2-sphere is a Kähler manifold there are four supersymmetry operators as opposed to two in the 

generic case. These supersymmetry operators are 

 

   

 



   

 

and   ,  . 

The Hamiltonian is the square of these operators, the Laplacian. 

 

  

    

 

     . 

 

The zero energy eigensolutions correspond to the cohomology of the 2-sphere;  

namely the constant zero-form   and the volume form   . The excited states may be found 

by considering the Hamiltonian on zero-forms and then using the supersymmetry operators to find the one-form 

and the two-form solutions. 

On zero-forms the Hamiltonian is simply 

 

    . 

 

The isometries of the 2-sphere are rotations of the manifold which preserve the metric, thus the generators of 

SU(2) commute with the Laplacian and so its eigensolutions form representations os SU(2). The highest weight 

solutions are of the form 

 



    

 

which can easily be shown to satisfy the Schrödinger Equation with energy  . 

 

   

       

       

        . 

 

These solutions have highest weight because they are annihilated by the raising operator  

 

  

       

        

 

and the eigenvalue of the operator   is n. The rest of the solutions in the multiplets can be 

found by applying the lowering operator  , which lowers the eigenvalue of  by one at each step. These 

multiplets have energy  and each member is labelled by the eigenvalue of  , the angular 

momentum around the equator of the sphere, which takes the values . These solutions  

equal the Associated Legendre Functions , where  . For example, the first excited states 

form the adjoint representation of SU(2) 

 

         

         

 

and have energy E = 2 . 

Having solved the Schrödinger Equation for (0,0)-forms, we are now in the position of being able to find the 

(1,0)-form, (0,1)-form and (1,1)-form solutions. Acting with the supersymmetry operator  on a (0,0)-form 

solution gives a (1,0)-form solution 

 



      

 

and acting with  gives a (0,1)-form solution 

 

     

 

while acting consecutively with both supersymmetry operators will give a (1,1)-form solution. 

 

   

 

so supersymmetry produces a four-fold degeneracy on top of the (2n+1)-fold degeneracy due to SU(2) 

symmetry. 

 



 

4.2 Inclusion of a Killing Vector into the Supersymmetry Algebra 

Following Witten we will now generalize the exterior derivative by the addition of the operation of taking the 

interior product with a Killing Vector k 

 

       

 

where s is a positive parameter. This leads to a supersymmetry algebra of the form of equations (1) of section 

3.4. On the 2-sphere the simplest Killing Vector to use is the generator of rotations around the equator  . The 

factor of i is necessary because  is imaginary and a Killing Vector must be real. 

Writing out the operators  and  explicitly using the Killing Vector  gives 

 

   

 

   . 

 

Defining the supersymmetry operators as  , leads to the Hamiltonian  

 

    (1) 

 

where H is the ordinary Laplacian and  is the 4x4 unit matrix. The Hamiltonian operator has been defined 

such that   . This is because the holomorphic Laplacian  , on a Kähler manifold, 

equals half the ordinary Laplacian  , see Appendix 4(i). The new s-dependent terms correspond to the 

terms in section 3 multiplied by a half 

 

     



where   and   is its dual,  . 

The central charge P takes the form 

 

  

 

    

 

The Schrödinger Equation can be diagonalized on even-forms, i.e. (0,0)-forms and (1,1)-forms by writing 

the solutions in terms of the self and anti-self-dual combinations of the unit (0,0)-form and the Kähler form 

 

     

 

These solutions are self and anti-self-dual respectively under the operation of i times the Hodge Star. The 

factor of i comes from the alteration in the definition of the Hodge Star when the exterior algebra is taken to 

be complex rather than real. This is due to the fact that if   ,  . 

Acting with the Hamiltonian  on  gives for the (0,0)-form piece, the equation 

 

     (2). 

 

The equation for the (1,1)-form piece is exactly the same 

 

 . 

 

So solving the Schrödinger Equation on even-forms reduces to finding solutions  of this equation. The 

odd-form solutions can then be found by applying the supersymmetry operators. 

The excited states have an eight-fold degeneracy;  and  are contained in separate supersymmetry 

quadruplets related by Poincare duality. The other members of the quadruplets may be found by acting with the 

supersymmetry operators 

 



   

 

   

 

  

 

so the quadruplet contains an anti-self-dual even-form as well as a self-dual even-form. The other quadruplet 

which contains  is obtained from this one by exchanging  and  . As s tends to 

zero  becomes equal to  and the quadruplets converge to become identical. 

It is now obvious what the zero energy eigensolutions of  are as these must be annihilated by  and  . 

For this to occur either  must be real, satisfying 

 

     

 

and the complex conjugate equation or  must be real and satisfy 

 

     . 

 

Thus there are two zero energy eigensolutions 

     

which is self-dual and 

 

     



which is anti-self-dual. As s tends to zero these solutions tend to the sum and difference of the representatives 

of the cohomology of the 2-sphere. The fact that the zero energy solutions still exist means that supersymmetry 

is unbroken; unlike the case of the 2-torus, see Appendix 3(iii), where the introduction of a Killing Vector 

removes all zero energy states. 

The zero energy solutions are the only ones that can be found exactly. To study the spectrum of the excited 

states approximate methods must be used. 

The equations for  may be further simplified by using the zero energy solutions as integrating factors. 

Substituting 

 

     

 

into equation (4.1.2) gives immediately 

 

     (3) 

 

where the Schrödinger Equation now takes the form of the Laplacian plus a term proportional to the operator 

 . This vector commutes with the Killing Vector   , but not with the other two 

generators of SU(2), so m, the eigenvalue of  , is still a good quantum number, but the full SU(2) symmetry 

has been broken to U(1). 

There are two sets of excited states which correspond to excitations around the two zero energy ground states. 

The signs of the parameter s in equation (3) for these two sets of states are opposite, however it turns out that 

the energy levels are the same in both cases. 

 



 

4.3 Perturbation Theory 

For small s the term  in the Schrödinger Equation may be treated as a perturbation of Legendre’s 

Equation. This vector can be rewritten so that its effect on Associated Legendre Functions is much more 

obvious. 

    

 

      

 

 are the Associated Legendre Functions with  and  are the SU(2) raising and lowering 

operators. The effect of this operator is therefore to conserve m and change n by plus or minus one. This 

indicates that the first order shift in energy 

 

    

 

is zero for all n and m. In terms of the coordinates on the 2-sphere the vanishing of  is due to the fact 

that the perturbation is anti-symmetric under the change of coordinates  , corresponding to the 

inversion of the sphere 

     . 

 

This is due to the opposite direction of the rotation around the sphere’s equation when viewed from the other 

pole. Applying this change of coordinates to the matrix elements gives 

 

   

 

which after taking the complex conjugate of the right hand side implies that the matrix elements must vanish. 

Thus all odd orders of perturbation theory are zero, so the sign of s is irrelevant and the excitations around the 

two different ground states are degenerate to all orders in perturbation theory. Each excited state is a member of 

a quadruplet, so the total degeneracy due to supersymmetry is eight-fold. 

 

 

 

 



4.3.1 Second Order Perturbation Theory 

In the formula for the second order perturbation theory shift in energy 

 

 

 

which is in principle an infinite sum. Only the two terms  ,  with  contribute. The 

easiest way to calculate the shift is to use a formula from the theory of Legendre Functions 

 

    , 

 

where  . 

In terms of these coordinates  , where  and  are the longitude and latitude on the sphere, the 

perturbation takes the form 

 

     . 

 

The effect of this operator on the Associated Legendre Functions  is therefore 

 

   (1) 

 

Substituting this formula into the expression for the second order energy shift 

 

 

 

    

 

gives 

 

         



 

    . 

 

This formula depends on  , so the SU(2) (2n+1)-plets are split into n doublets and a singlet. 

On the lowest of the excited representations, the 3 which has energy  and the 5 which has energy  , 

the second order energy changes due to the perturbation are 

 

           

           

 

             

             

 

 

4.3.2 Fourth Order Perturbation Theory 

The next non-zero order of perturbation theory is fourth order. The corrections to the energy to this order may 

be found by a substitution of the form of 

 

   

 

into equation (3) of section 4.2 and use of formula (1) of section 4.3.1. The energy to this order is 

    . 

Equating coefficients of ,  and  in this equation, in the case where  , leads to the 

expression 

  

   

      

 

Substituting in the value , for the first excited state with m = 0, gives the fourth order energy shift, 

      

The next case n = 2, gives 

      



4.4  Asymptotic Solutions 

For large s the spectrum of the Schrödinger Equation can be found as an asymptotic expansion in  . The low 

energy solutions are localized around the fixed points of the vector   , which are where the 

Hamiltonian is smallest. These fixed points are the same as those of   ,   and   , the south and 

north poles of the sphere. 

 

 

4.4.1 The Harmonic Oscillator Approximation 

In the large s limit the Hamiltonian tends to a supersymmetric harmonic oscillator around these fixed points. 

Substituting    into equation (1) of section 4.2 we obtain 

 

   

 

        

 

Taking s large and expanding in powers of    gives the approximate form of the Schrödinger Equation near the 

south pole 

 

  

 

        

 

Neglecting terms of order    and smaller and substituting    back into the equation gives the harmonic 

oscillator equation 

 



   . 

 

The coordinate z is not well defined at the other fixed point of   , so the second coordinate patch must be 

utilised. Using the coordinate    , the Schrödinger Equation becomes 

 

 

 

       

 

where a factor of    has been inserted into the off-diagonal matrix to compensate for the transformation of 

the two-form   . For small w, near the north pole, this equation takes the same form 

as that near the south pole apart from the alteration   , due to the opposite manner of the rotation 

around the equator when the sphere is viewed from the opposite pole. 

 

   

 

To write the Killing Vector in the standard form, where it is multiplied by a positive parameter, interchanges 

the coordinates    and   , so that the coordinates in the second patch have opposite orientation to those in the 

first. This explains why the zero energy solutions near the two poles have opposite duality. The zero energy 

solution near the south pole is self-dual 

     

whilst that near the north pole is anti-self-dual 

      . 

The eight-fold degeneracy of the excited states is now realised as a degeneracy between two quadruplets, one at 

each pole. The general form of the excited states can be found using harmonic oscillator ladder operators. At 

the sound pole the solutions are 



    

 

with energy   and with the eigenvalue of the Lie Derivative along the Killing Vector  , 

 . As these states are harmonic oscillator eigenstates, they form SU(2) representations of dimension 

  where   . When the  corrections to the energy are included this SU(2) symmetry is 

broken to U(1). 

To this approximation the supersymmetry operators act on the even-form solutions  with harmonic 

oscillator lowering operators to give the odd-form solutions as 

    

     

with energy   and    respectively. Both sets of states have a (p+q)-fold degeneracy. 

The other even-form states in the supersymmetry multiplets, obtained by acting on   with both  and 

  consecutively are 

    

where  and   and the degeneracy is  - fold.  

The total degeneracy of even-form solutions of energy   localized around the south pole, as for odd-

forms, is 

    . 

The results near the north pole are completely analogous. 

 



4.4.2  Asymptotic Corrections 

The second order terms in the asymptotic expansion of the energy are of order one and so don’t vanish in the 

large s limit. The easiest way to calculate these corrections to the harmonic oscillator energies is to use the form 

of the Schrödinger Equation, equation (3) of section 4.2 

    

The plus sign is taken corresponding to excitations around the self-dual ground state, which is localized around 

the south pole for large 2. When considering solutions localized around the north pole the sign in the equation is 

again positive because the minus sign corresponding to the anti-self-dual ground state is cancelled by the fact 

that   when using the coordinate around the north pole   . Because of this the  corrections 

are the same at both poles. 

Putting    and keeping terms up to  gives the equation 

    . 

Inserting    as an expansion in powers of  and  

      

gives 

   

which implies the following equation for the coefficients   in the solutions 

    

For a closed series solution   , which gives the energy to  as 

       . 

The  - fold degeneracy of the harmonic oscillator has been split, so that states either form doublets, 

produced by interchanging p and q in the formula for , or singlets if . This is due to the U(1) 

symmetry of  . There is of course still the eight-fold degeneracy due to supersymmetry as well. The odd-

form solutions have energies    and   and the other 

even-form solutions have    . 

The spectrum of the low lying states in this approximation and the degeneracy of the even-form states near the 

south pole is the following. 

 



  

 



4.5 Summary 

After the inclusion of the Killing Vector the asymptotic zero energy solutions localized one near each fixed 

point, are in a one-to-one correspondence with the exact zero energy solutions. Near the south pole  

 

   

 

and near the north pole  

 

  . 

 

This correspondence is due to Witten’s relation   . 

By the index arguments of section 3, the number of even-form solutions minus the number of odd-form 

solutions must be independent of s. For  on the 2-sphere, the zero energy solutions corresponding to 

the representatives of the cohomology are the constant (0,0)-form and the Kähler form  , 

both of which are even-forms, therefore  . For non-zero s there are again two even-form zero 

energy solutions and no odd-form ones and ultimately in the large s limit these solutions become localized 

one at each fixed point. This corresponds to the Lefschetz Fixed Point Theorem, 

  

     number of fixed point   . 

 

The excited states, which form the (2n+1)-dimensional representations of SU(2) when s = 0 are more 

difficult to analyse for non-zero s, but approximate methods show how the SU(2) symmetry breaks to U(1). 

 



Appendix 4(ii) 

   Computer Analysis 

After the introduction of the Killing Vector    into the supersymmetry algebra, the Schrödinger Equation 

(3) of section 4.2 is not soluble analytically for excited states, so a computer program was written to find 

accurate values of the eigenvalues of this equation for all values of s. The program uses the library 

subroutine D02KDF from the NAG FORTRAN library, which finds a specified eigenvalue E of a Sturm-

Liouville system defined by a second order self-adjoint differential equation 

      ,               

together with boundary conditions at the endpoints  a  and  b . 

To transform equation (4.1.3) into a suitable form for the computer analysis the substitution 

     where          ,       

was used leading to the equation, 

 

    

 

which is the Associated Legendre’s Equation plus the s-dependent term. 

The operator    is equivalent to the central charge  P  and commutes with the Hamiltonian, so the 

solutions of the Schrödinger Equation may be taken to be eigensolutions of this operator with eigenvalue m, 

thus reducing the equation to an ordinary differential equation. The self-adjoint form necessary for 

specification in the library subroutine is given by 

    

so that the functions  and  are 

  

  

The boundary conditions are specified in YL(1) and YL(2) by the values of  and  at the 

other end point, only the ratios of the two values being important. 

 

This is the program used to find the eigenvalues of the Schrödinger Equation on  after the introduction of 

the central charge.  

PROGRAM  SUSYS2 

REAL *8    DELAM, ELAM, TOL, PI, D, HMAX(2, 4), XPOINT(4), M, S 

INTEGER  IFAIL, K, MAXIT 

EXTERNAL BDYVL, COEFF, MONIT 



COMMON PI, D, M, S 

PRINT *,  ‘ENTER M, S, K, ELAM’ 

READ *,  M, S, K, ELAM 

D = 0.001 

TOL = 0.0001 

DELAM = 0.1 

PI = X01AAF(D) 

MAXIT = 0 

XPOINT(1) = 0.0 

XPOINT(2) = 0.001 

XPOINT(3) = PI-0.001 

XPOINT(4) = PI 

HMAX(1, 1) = 0.0 

IFAIL = 0 

CALL  D02KDF  (XPOINT, 4, COEFF, BDYVL, K, TOL, ELAM, 

  DELAM, HMAX, MAXIT, 0, MONIT, IFAIL) 

WRITE (*, *)  K, ELAM, DELAM, IFAIL 

STOP 

END 

SUBROUTINE MONIT (MAXIT, IFLAG, ELAM, FINFO) 

INTEGER  MAXIT, IFLAG, I 

REAL  *8  ELAM, FINFO (15), PI, D, M, S 

COMMON PI, D, M, S 

WRITE (*, *) MAXIT, IFLAG, ELAM, (FINFO(I), I = 1, 4) 

RETURN 

END 

SUBROUTINE  BDYVL (XL, XR, ELAM, YL, YR) 

REAL  *8  ELAM, XL, XR, PI, D, YL(3), YR(3), M, S 

COMMON PI, D, M, S 

YL(1) = 1.0 

YL(2) = M*EXP(S) 

YR(1) = 1.0 

YR(2) = -M*EXP(-S) 

RETURN 

END 

SUBROUTINE COEFF (P, Q, DQDL, X, ELAM, JINT) 

REAL  *8  P, Q, M, S, DQDL, X, ELAM, PI, D 

INTEGER  JINT 



COMMON PI, D, M, S 

P  =  -SIN(X)*EXP(S*COS(X)) 

Q  =  -P*(M*M/(SIN(X)*SIN(X)) – ELAM) 

DQDL =  P 

RETURN 

END 

 

 

The numerical results from the computer show how the energies of the eigenstates as functions of the 

parameter s interpolates between the perturbative regime    and the asymptotic regime   , and 

verify the approximate analysis in these two cases. 

The first two graphs compare the results from the computer analysis with second order and fourth order 

perturbation theory and also with the asymptotic results in the cases of the first two excited states with 

 . These graphs show a good agreement between the perturbative results and the numerical values 

from the computer for surprisingly large values of s. 

The third graph shows how the spectrum varies as s increases for the low lying energy levels. The values of 

  on the right-hand side of the graph indicate the level of the corresponding Legendre Funciton    which 

the eigensolution tends to as s tends to zero. The graph shows the symmetry breaking which splits the SU(2) 

 -plets into    doublets and a singlet.  

Asymptotically the graphs have gradients proportional to s multiplied by an integer corresponding to the 

harmonic oscillator energies   , with a degeneracy of   . Taking into account the    corrections 

the graphs show agreement with the energy levels given at the end of section 4. 

Graph 3, for   , in fact only shows half the even-form solutions. Apart from the zero energy solutions 

each even-form solution is paired with an odd-form solution. 



 

 

 

 

Graph 1 on the following page shows the energy of the first excited state with m = 0 for different values of 

the parameter  s  calculated using the various approximate methods. The crosses mark the results of the 

computer analysis. 



 

 

 

 



 

 

Graph 2 on the following page shows the energy of the second excited state with  m = 0  for different values 

of the parameter  s  calculated using the various approximate methods. The crosses mark the results of the 

computer analysis. 

 

 



 



 

 

 

Graph 3 on the following page shows the lowest energy levels as functions of s as given by the computer 

analysis. When  s = 0  at the left-hand side the solutions are Associated Legendre Functions   , on the 

right the energies tend to the asymptotic vales,    is the level of the harmonic oscillator solution. 

 

 



 

 


