
Chapter 2 

 

Morse Theory on a 2-Torus 

 

1. Morse Theory on a 2-Torus 

To illustrate Witten’s ideas about Morse Theory and supersymmetric quantum mechanics we will deal with 

one of the simplest compact manifolds, the 2-torus, which admits a metric of zero curvature. T² may be 

represented, in flat two-dimensional space, as a square with sides of length a, whose opposite edges are 

identified. 

 

 

In two dimensions the possible different classes of p-forms are zero-forms , one-forms  

and , and two-forms . To show in detail how various operators act on different p-

forms the notation will be to represent wavefunctions as 4x1 column matrices 

 

 

 

and to represent operators such as the Hamiltonian or the supersymmetry operator as 4x4 matrices. 

  

Taking the supersymmetry operator to be the sum of the exterior derivative and its adjoint , 

which in the matrix notation takes the form 

 

 

 

 

 

the Hamiltonian on T² is the flat space Laplacian 

 

 

 

 

 



where  is the 4x4 unit matrix. 

 

The Schrödinger Equation is 

 

 

 

with boundary conditions 

 

 ,   

 

 ,  

 

The zero energy solutions to this equation are the representatives of the cohomology of T², these are the 

four constant p-forms 

 

 

 

thus the Betti Numbers , the dimensions of the independent harmonic p-forms, are , 

, . 

 

These four solutions are annihilated by the supersymmetry operator and so form singlets under 

supersymmetry. Higher energy solutions may be obtained by multiplying these four constant p-forms by the 

functions: 

 

 

 

and 

 

 

 

where n and m are integers. Along with their supersymmetry partners, this gives sixteen solutions each with 

energy . The supersymmetry partners can easily be obtained by applying the 

supersymmetry operator. For instance, acting on the zero-form solution , gives 

 

 

 

 



2.1 Morse Function (1) 

 

A Morse Function on a torus is a smooth real-valued function defined on the torus i.e. 

 

 

 

so to write the function h in terms of Cartesian coordinates the function must have the same period as that of 

the torus itself. A suitable Morse Function for this example is 

 

 

 

The critical points of the Morse Function are the points at which the one-form  vanishes, the 

maxima, minima and saddle points of the function 

 

 ,   

 

 ,   

 

Thus the critical points of  are . 

The Morse Index of a critical point is the number of negative eigenvalues of the Hessian of  at the 

critical point. 

 

 ,  

 

 

giving the Hessian as 

 

 

 

None of the eigenvalues at any of the critical points are zero so the Morse Function is non-degenerate. 

 

A table of the critical points of h(x,y) on T² with their Morse Indices p and the critical value of h(x,y). 

 

 

 



This shows that the Morse Numbers , the number of critical points with Morse Index p, in this example 

are: 

    M0 = 1, M1 = 2, M2 = 1,  

 

so that the Morse Inequalities are saturated. 

 

    M0 = B0, M1 = B1, M2 = B2. 

 

 Introducing the Morse Funciton into the supersymmetry algebra by conjugating the exterior derivative 

with its exponential 

,   

which in terms of the matrix notation gives 

 

 

 

 

 

  

The supersymmetry operator generalizes to , and its square is the Hamiltonian Ht. 

 

 

 

 

where  . 

 

In terms of the Morse Function 

 

 



 

the Hamiltonian takes the form 

 

 

 

where  . 

 

The Schrödinger Equation is no longer exactly soluble for excited states, but exact zero energy solutions 

can still be found. The zero energy solutions are: 

 

 

 

 

 

 

 

 

 

corresponding to the Betti Numbers of the Torus being B0(T²) = 1, B1(T²) = 2, B2(T²) = 1. 

 

 

2.1.1 The large t limit 

For large t the Hamiltonian is large everywhere except near the critical points of h(x,y), where  and 

 simultaneously vanish, so the low energy solutions of the Schrödinger Equation become 

concentrated around these points. Near the critical point (0,0), taking x and y to be small and neglecting 

terms of , the operators  and  take the approximate forms , , where 



 

 

 

 

 

so the approximate Hamiltonian is that of a supersymmetric two-dimensional harmonic oscillator around 

the critical point. 

 

 

where  

 

The supersymmetric harmonic oscillator has one zero energy solution, which in this case is the zero-form: 

 

 

 

where the otherwise non-zero zero point energy is cancelled in the Hamiltonian by the term . Higher 

energy solutions can be found by acting on this ground state with the harmonic oscillator ladder operators. The 

raising operators are: 

 

 ,  

each of which acting on a solution of energy E gives a solution of energy  and the lowering operators 

are: 

 

 ,  . 

 

The complete zero-form solutions are: 



 

 

 

with energy  . 

 

The spectrum for one-form solutions is exactly the same but with the energy of each state raised by  , 

 

 

 

 

 

and the two-form solutions have energy raised by  

 

 

 

 

The structure of the supersymmetry doublets can be seen by writing out the supersymmetry operator explicitly: 

 

 

 

 

 

 



so acting on the zero-form   with  will give its superpartner 

 . Similarly for the two-form solutions,  pairs  with the 

linear combination of one-forms  . 

Around the other critical points the results are completely analogous, but with the spectrum of the different 

kinds of p-forms interchanged. 

 Near the critical point  which has Morse Index 1: 

 

 

 

 where  . 

 

The zero energy solution is the one-form : 

 . 

 

Near the critical point  which has Morse Index 1, the zero energy solution  is: 

 . 

 

Near the critical point  which has Morse Index 2, the zero energy solution is the two-form: 

 . 

 

At each critical point of Morse Index p, the zero energy solution is a p-form. 



2.1.2  Tunnelling (1) 

Because the Morse Inequalities are saturated in this example, these approximate zero energy solutions must 

correspond to the zero energy solutions of the exact Schrödinger Equation. Any tunnelling between critical 

points which might have removed the degeneracy between these energy levels cancels because there are two 

paths in opposite directions between any two critical points differing in Morse Index by one. 

 

The diagram shows the critical points x, of the Morse Function, with paths of steepest ascent  between critical 

points and arrows showing the direction of the path. The coboundary operator  and its adjoint annihilate all of 

the zero energy states localized at the critical points. For example, acting on the one-form state , 

localized at the point  

     

      

      

      

      

See the introductory section 1.2 for the definition of the operator  . 

 The next example of a Morse Function will be in the more interesting case where the Morse Inequalities 

are not saturated. 



 

2.2 Morse Function (2) 

A less trivial example of a Morse Function, where the Morse Inequalities are not saturated, may be found by 

halving the period in the x direction of the Morse Function in the previous example. This gives the new Morse 

Function: 

 

 

 

Differentiating to find the critical points gives: 

 

 ,   

 

 ,   . 

 

Therefore h(x,y) has eight critical points. Differentiating again gives the Hessian as: 

 

 

 . 

 

A table of the critical points, their Morse Index and the critical value of h(x,y). 

 

 

Thus the Morse Numbers are: 

   M0 = 2,  M1 = 4, M2 = 2, 

 

so the Morse Inequalities are not saturated. The Morse Inequalities state: 

 

 

 

 

 Introducing the Morse Function into the supersymmetry algebra leads to a Hamiltonian that is almost 

identical to the previous example: 



 

 

 

 

where  . 

 

The Schrödinger Equation has four zero energy solutions, a zero-form, two one-forms and a two-form, 

corresponding to the cohomology of the torus. These solutions are: 

 

 

 

 

 

 

 

 

 

For large t the Hamiltonian approximates to a harmonic oscillator at each of the critical points, and so there is 

one p-form approximate zero-energy solution around each critical point of Morse Index p. At the critical point 

(xc, yc) this solution takes the form: 

 

 

 

multiplied by the p-form corresponding to the critical point. In the case of the critical points of Morse Index 

one, the points  correspond to the one-form dx and the points  correspond to the one-

form dy. 



In this example there are twice as many approximate zero energy states as exact zero energy solutions. A more 

exact calculation must remove this spurious degeneracy. Perturbation theory, however, will not lift the energy 

of any of the approximate zero energy states. At each critical point the harmonic oscillator solutions form a 

complete set of orthogonal functions, but solutions at different critical points will not be orthogonal, so 

perturbation theory must be done separately at each critical point and degenerate perturbation theory will not be 

used even though the zero energy approximate solutions are degenerate. If in perturbation theory any of these 

approximate zero energy solutions gained a contribution to their energy, then by the symmetry of the problem 

under a translation on a torus, all the approximate zero energy solutions must gain an energy. This cannot occur 

because there are in fact zero energy solutions. An alternative way of looking at this is that to whatever order 

the Morse Function  is expanded in  and , around the critical point, in the 

Schrödinger Equation, there is always one zero energy solution which is  multiplied by 

the p-form corresponding to the critical point. This zero energy solution will always be normalizable as it is 

defined on a compact manifold. For instance, expanding the Morse Function to third order around the critical 

point (0,0): 

 

 . 

 

The approximated operator  will annihilate the function: 

 

 

 

which is normalizable because x and y are only defined within the range  . 

Excited states, however, will not in general have zero contributions in perturbation theory and their energy will 

form an asymptotic series in powers of  . For example the first excited state: 

 

 

 

after first order perturbation theory is found to have energy  . To all orders of perturbation 

theory this state will be degenerate with 

 

 

 

as all the integrals involved will be equal up to a translation in x, so as with the zero energy states the 

degeneracy may only be split by non-perturbative or tunnelling effects. 

 



 

2.2.1 Tunnelling (2) 

The Morse Inequalities are not saturated in this example, so tunnelling effects may produce an improved 

bound on the Betti Numbers. 

 

 

The diagram shows the critical points x, and the paths of steepest ascent between them marked by the dashed 

lines and labelled  . The arrows show the direction of the path i.e. from a point of Morse Index p to a critical 

point of Morse Index (p+1). 

All contributions to the operation of the coboundary operator , from paths of steepest descent in the y 

direction cancel due to there being two paths in opposite directions in each case. This is not true of paths in the 

x direction. For example, acting with the coboundary operator  on the zero-form state  gives: 

 

 

 

 

 . 

 

Acting on the other approximate zero energy zero-form state ,  gives the one-form state: 

 



so that the zero-form state annihilated by this operator, the state which still has zero energy in the W.K.B. 

approximation, is the symmetric combination 

  . 

The anti-symmetric zero-form 

  

being paired by the operation of  to form a supersymmetry doublet with the one-form, 

  . 

Similarly the coboundary operator  annihilates the symmetric one-form states, 

  ,  

and pairs the anti-symmetric one-form 

  

and the anti-symmetric two-form state 

  . 

The symmetric two-form state 

  

being a two-form, is automatically annihilated by  which will map p-forms to (p-1)-forms with signs 

dependent on the directions of the paths between the critical points. 

In this example, the number of zero energy p-form solutions in the W.K.B. approximation are: 

 

Y0 = 1,  Y1 = 2,  Y2 = 1. 

 

These numbers equal the Betti Numbers of the torus T². 


