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Chapter 1 

 

Supersymmetry and Morse Theory 



1. Supersymmetry and Morse Theory 
 

Various of Witten’s papers of the early 1980s [1], [2], [3] were concerned with the subject of 

supersymmetry breaking. The fermion-boson mass degeneracy produced by supersymmetry is not observed 

in nature, so in any supersymmetric theory, which purports to be a viable physical theory, supersymmetry 

must be broken. It is therefore important to know in which theories supersymmetry breaking occurs. The 

novelty of Witten’s approach to this problem was to use the relationship between the indes of the 

supersymmetry operator and deformation invariants of the underlying manifold. The reasoning that pointed 

in this direction is as follows. 

In quantum field theories spontaneous symmetry breaking occurs when the vacuum is not annihilated by the 

generators of the symmetry. The Hamiltonian in supersymmetric theories is equal to the sum of the squares 

of the supersymmetry generators and so spontaneous supersymmetry breaking occurs if and only if the 

vacuum energy is greater than zero. In supersymmetric theories non-renormalization theorems guarantee the 

cancellation of contributions to the vacuum energy from fermion and boson loop diagrams, so if 

supersymmetry is unbroken at the tree level the question of whether supersymmetry really is broken or not 

becomes a question about non-perturbative effects. The fact that perturbation theory is only concerned with 

local information, whereas non-perturbative effects incorporate global information points to the conclusion 

that spontaneous supersymmetry breaking is related to the topology of the manifold on which the 

supersymmetry operators are defined. The index of the supersymmetry operator is a topological invariant 

and equals  the number of zero energy bosons minus the number of zero energy fermions. If the 

index is non-zero there must be a zero energy state, so supersymmetry is unbroken, if the index is zero there 

may or may not be zero energy states. 

 In general the states annihilated by a particular differential operator are not easily found. One approach 

to finding whether such states exist would be to distort the manifold continuously into an orbifold, so that 

now all the curvature and therefore all the topological information is located at isolated points. The index of 

the elliptical operator will be equal to a topological invariant of the manifold, and this topological invariant 

will be the same for the orbifold as for the manifold, but in the case of the orbifold it will be calculable with 

reference only to the isolated points with non-zero curvature. 

 In Witten’s paper ‘Supersymmetry and Morse Theory’ an alternative approach is taken. Instead of 

distorting the base manifold, the elliptic operator defined on it is distorted. In the first case, the 

supersymmetry operator is conjugated by a Morse Function multiplied by an arbitrary parameter and the 

limit is taken as the parameter tends to infinity. The zero energy solutions of the Hamiltonian now become 

localized around isolated points (in the non-degenerate case), the critical points of the Morse Function, and 

are easily calculable. The fact that the index of the supersymmetry operator is independent of the arbitrary 

parameter leads to a proof of the Morse Inequalities, using “physicists’ methods”. After analysing quantum 

mechanical tunnelling between critical points, which removes some of the zero energy degeneracy, Witten 

proposes a strengthening of the Morse Inequalities. 



 In the second part of Witten’s paper the supersymmetry operator is altered by the introduction of a 

Killing Vector multiplied by an arbitrary parameter. When the limit is taken of the parameter tending to 

infinity, the zero energy solutions of the Hamiltonian become localized around the fixed point set of the 

Killing Vector, where the supersymmetry operator still takes its unaltered form. The index’s independence 

of the parameter leads to proofs of the Lefschetz Fixed Point Theorems, that the Euler Characteristic and 

Signature of the fixed point set equal those of the whole manifold. Witten also proves that the number of 

zero energy solutions for arbitrary non-zero values of the parameter is equal to the number of zero energy 

solutions for asymptotically large values of the parameter, and is thus equal to the sum of the Betti numbers 

of the fixed point set. Even though these results are proved in terms of finite dimensional quantum 

mechanics, they are ultimately intended for application to quantum field theory, which is infinite 

dimensional. 

 In what follows not much mention will actually be made of spontaneous supersymmetry breaking, but 

Witten’s paper ‘Supersymmetry and Morse Theory’ will be examined in detail and various aspects of it will 

be illustrated by studying particular quantum mechanical examples. In the first section, the part of Witten’s 

paper related to proving the Morse Inequalities, will be summarised. The second section is an illustration of 

these results using specific examples of Morse Functions on the two-dimensional torus, one of which 

saturates the Morse Identities and one which does not. The third section summarises the part of Witten’s 

paper relating to Killing Vectors and their fixed point sets. In the fourth section the results about Fixed 

Point Theorems will be illustrated in the case where the fixed point set consists of isolated points. This will 

be done by analysing the zero energy states of supersymmetric quantum mechanics on the two-dimensional 

sphere. The effect on the excited states of introducing a Killing Vector into the supersymmetry algebra will 

also be studied using various approximate methods. The fifth section is an illustration of the Fixed Point 

Theorems when the fixed point set does not necessarily consist of isolated points. The case which will be 

treated is that of supersymmetry on the manifold . The effect of introducing a Killing Vector will again 

be studied in detail. Various standard results and definitions pertaining to topology and complex manifolds 

will appear in the appendices. 

 



1.1 Supersymmetric Quantum Mechanics 

 

 The simplest possible supersymmetry algebra is the N = 2 supersymmetric quantum mechanics algebra: 

 

  ,  

 

There are two supersymmetry operators due to the fact that the quantum mechanical wavefunction is always 

complex. 

 One way to construct operators which satisfy this algebra is in terms of the De Rham operators, acting 

on the exterior algebra Λ*(M), of the manifold, thus leading to connections between supersymmetric 

quantum mechanics and the cohomology of M. Proceeding in this manner gives the supersymmetry 

operators as: 

 

 ,  

 

Where  d  is the exterior derivative and  δ  is its adjoint, see Appendix 1a,  , where  n  

is the dimension of the manifold and  p  is the degree of the form on which  δ  is acting,  *  is the Hodge 

Star operation. Squaring these operators gives the Hamiltonian as equal to the Laplacian: 

 

 

 

The supersymmetry operators map even-forms to odd-forms and odd-forms to even-forms, splitting the 

exterior algebra into  and . Even-forms may be thought of as bosons and odd-forms as 

fermions. Non-zero energy solutions of the Schrödinger Equation are generically doubly degenerate. Using 

the Hodge Decomposition, a wavefunction may be split into an exact and a coexact piece 

 

 

 

the harmonic piece must vanish for non-zero energy. 

 Substituting this wavefunction into the Schrödinger Equation gives 

 

 

 

 . 

 

Equating the exact and coexact pieces 

 



 ,  

 

leads to the conclusion that    and    are separately eigensolutions of the Hamiltonian with 

energy E. We can now assume that   is either exact or coexact. If it is exact 

 

 

 

acting with    gives 

 

 

 

and acting with    gives the same result, so supersymmetry pairs an exact p-form to a coexact (p-1)-form. 

These two solutions are degenerate due to the commutivity of the supersymmetry operators with the 

Hamiltonian. Alternativaly, if the wavefunction was a coexact p-form it would be paired by supersymmetry 

to an exact (p+1)-form.   

Zero energy solutions of the Schrödinger Equation are annihilated by the supersymmetry operators and so 

do not form doublets. These solutions correspond to the harmonic p-forms, and the number of independent 

such p-form solutions is equal to the Betti Number  , the dimension of the p-th cohomology group of 

the manifold. 

The Witten Index , the difference in the number of bosons and fermions in the theory, in fact 

equals the number of zero energy bosons minus the number of zero energy fermions, as all non-zero energy 

solutions come in boson-fermion pairs. In the case of supersymmetric quantum mechanics the Witten Index 

is the index of the De Rham complex, and thus equals the Euler Characteristic of the base manifold. 

  

      

 



1.2 Morse Theory 

 

Morse Theory relates the properties of the critical point set of a Morse Function, defined on a differentiable, 

compact Riemannian manifold M, to the underlying topology of the manifold. A Morse Function    is a 

smooth, real valued function on  M 

 

 

 

A critical point  , is a point at which all the first derivatives of the Morse Function simultaneously 

vanish. The Morse Index  p, of the critical point, is the number of negative eigenvalues of the matrix of 

second derivatives of the Morse Function at the critical point, known as the Hessian. Non-degenerate Morse 

Theory is concerned with Morse Functions which have only isolated critical points. For this to be the case 

the determinant of the Hessian must be non-zero for each critical point. A degenerate Morse Function has a 

Hessian which has zero eigenvalues for some of its extrema, the dimension of the critical manifold equals 

the number of zero eigenvalues. Unless specifically stated, what follows will only deal with non-degenerate 

Morse Theory. 

 

 

1.2.1 The Weak Morse Inequalities 

 

 Witten’s technique of incorporating a Morse Function into the supersymmetric quantum mechanics 

algebra is through conjugation of the exterior derivative and its adjoint 

 

  ,  

 

where  t  is an arbitrary parameter. The supersymmetry operators are now defined in terms of  and  

 

 ,  

 

and the Hamiltonian is now 

 

 . 

 

The supersymmetry algebra is unchanged 

 

 ,  

 



 As    the Hamiltonian    tends to the ordinary Laplacian, so for  t = 0  the number of zero 

energy p-form eigensolutions    is equal to the Betti Number  . For  t ≠ 0  each harmonic p-

form    is in a one-to-one correspondence with a p-form    which is closed, but not exact, 

in the sense of  dt . The numbers of zero energy p-form eigensolutions of    for  t ≠ 0  are therefore still 

equal to the Betti Numbers of the manifold. 

 In calculating an explicit formula for the Hamiltonian it is convenient to represent the exterior derivative 

as    , where the  act on the exterior algebra as exterior products and the covariant derivative  

D/Dx
i
  acts on functions. The index  i  is summed over. The interior derivative is represented as  , 

the    being the adjoints of  , acting on the exterior algebra as interior products. The    and    may 

be taken to be fermion creation and annihilation operators as they change fermion number by plus and 

minus one respectively, and they satisfy the anti-commutation relations 

 

 

 

 is the metric tensor of the manifold. In terms of these operators the Hamiltonian takes the form 

 

 

  

    

 

   + terms with one derivative acting on the wavefunction. 

 

The brackets mean that the derivatives act only on terms within the bracket and not on the wavefunction. 

The terms with one derivative acting on the wavefunction cancel thus 

 

 

 

 

 

 

 

 

 

Leaving the Hamiltonian as 



 

 

 

 

 

   

 

For large  t  the potential term    dominates the Hamiltonian, and the low energy eigensolutions 

become concentrated in the regions where this term is small, that is, near the critical point set where  

  for all   . In the case of non-degenerate Morse Theory, where the critical points are isolated, the 

Hamiltonian tends to the form of a supersymmetric harmonic oscillator around each critical point. Taking 

locally Euclidean coordinates and approximating the Morse Function near a critical point as 

 

 

 

with summation over I, where  and  are the eigenvalues and eigenvectors respectively, of the Hessian. 

The Hamiltonian takes the approximate form near the critical point 

 

where in the Euclidean approximation  and  . 

 

The approximate Schrödinger Equation near the critical point has one zero energy solution, a p-form if there 

are p negative eigenvalues , which means the critical point has Morse Index p. All other solutions have 

energies proportional to t. The simplest way to demonstrate the existence of the zero energy solution is 

through its annihilation by the approximated supersymmetry operator. 

Near a critical point of the Morse Index p the conjugated exterior derivative takes the approximate form  

  

with summation over i.  annihilates the state 

 

which is formed from the harmonic oscillator ground state and a p-form composed of the exterior product of 

the one-form , taking only the coordinates  for which the corresponding eigenvalue  is negative. 

 

 



The  only run over the coordinates where  is positive, as the other terms are annihilated when taking 

the exterior product, so  Near the critical point the interior derivative takes the approximate 

form 

 

 acting on the exterior algebra. Acting on  gives 

 

This time the  only run over the coordinates for which  is negative, as all the other terms are 

annihilated when taking the inner product, therefore  is annihilated by  as well as .  is 

therefore a zero energy eigensolution of the approximate Hamiltonian localized around the critical point, 

moreover it is the only zero energy eigensolution as no other exterior differential form is annihilated by 

both  and . 

There is one approximate zero energy p-form solution concentrated around each critical point of Morse 

Index p. Taking into account all the critical points of the Morse Function the total number of approximate 

zero energy p-form solutions is equal to the Morse Number Mp, the number of critical points of Morse 

Index p. Each zero energy eigensolution of the exact Hamiltonian will approximate, in the large t limit, to a 

zero energy eigensolution of the approximate Hamiltonian, so the total number of approximate zero energy 

eigensolutions must be at least as large as the number of exact zero energy solutions. This gives 

immediately the weak form of the Morse Inequalities. 

 

  ,  

 

The generalization of the preceding to the case of degenerate Morse Functions is straightforward. Near a 

critical manifold, in the large t limit, the Hamiltonian reduces to the ordinary Laplacian on the critical 

manifold, plus a harmonic oscillator in the transverse directions. The zero energy solutions of the 

approximate Schrödinger Equation around a critical manifold of Morse Index p are therefore the products of 

the p-form of the previous analysis and representatives of the cohomology of the critical manifold. The 

Morse Numbers may be defined more generally as 

 

  

where the summation is over the critical manifolds  with Morse Index k. With this generalized definition 

all the previous results follow in a completely analogous way for degenerate Morse Functions. 

 

 

 



 

 

1.2.1 The Strong Morse Inequalities 

All non-zero energy solutions come in boson-fermion pairs. In taking the large t limit the energy of certain 

solutions may converge to zero, but any solutions whose energies, as a function of t, exhibit such behaviour 

must come in supersymmetry doublets, so the index of the supersymmetry operator , acting on 

the decomposed exterior algebra , must be independent of t. When , the index equals the 

Euler Characteristic of the manifold. After taking the large t limit the number of zero energy solutions may 

be altered, but the index must be unchanged. From this it follows that 

 

      

 

where n is the dimension of the manifold. Along with the weak form of the Morse Inequalities, this equation 

implies the strong form. Writing out the previous equation more explicitly 

 

 

 

and using the first of the Weak Morse Inequalities,  gives 

 

 

 

 . 

 

Each of the  approximate zero energy n-form solutions which do not correspond to an exact zero 

energy solution must be paired by the action of  with one of the  (n-1)-form approximate 

zero energy solutions which do not correspond to exact ones. However, some of these  

solutions may be paired with (n-2)-form solutions, therefore 

 

 

 

Substituting this inequality into the index formula gives 

 

 

 

Reasoning in the same manner implies 

 



 

 

as some of the  approximate zero energy solutions which do not correspond to exact ones 

will be paired with (n-3)-form solutions. When this inequality is substituted into the index formula, the 

result is 

 

 

 

Continuing in the same way leads to the whole of the strong form of the Morse Inequalities 

 

  ,  

 

with equality when . 

 

A diagrammatical way of illustrating this result is as follows: 

 

 

The columns represent the Morse Numbers , the dimensions of the spaces of approximate zero energy p-

form solutions. The shaded portions represent the Betti Numbers , the dimensions of spaces of 

solutions which are actually annihilated by the exact supersymmetry operator. The unshaded portions 

marked with the s represent the dimension of the spaces of approximate zero energy solutions which do 

not correspond to exact zero, and the arrows show how these spaces are mapped into each other by the 

action of the supersymmetry operator. 

The strong form of the Morse Inequalities may be read from the diagram immediately. In the sum 

, all the Qs cancel except , so that 



 

 . 

 

The statement of the Morse Inequalities given by Witten, that 

 

 

 

is completely equivalent. Matching powers of t, this equation gives the following 

 

 

 ,  

 

 

which, after cancelling the powers of t, are exactly the equations represented by the diagram. 

 

1.2.3 Perturbation Theory 

 The spurious degeneracy of the zero energy solution is not removed in any order of perturbation theory. 

All the approximate zero energy solutions remain with zero energy, because perturbation theory only uses 

local information and so only involves a single critical point. As the terms in the Hamiltonian are expanded 

near a critical point, in powers of , there always exists one zero energy eigensolution 

 

 

 

where  is the Morse Function expanded around the critical point to the appropriate order in . 

This state will always be annihilated by both 

 

and its adjoint 

 

 

1.2.4 The W.K.B. Approximation 

In order to improve the bound on the number of zero energy solutions a calculation must be performed 

which is sensitive to the existence of more than one critical point; that is, a calculation to determine the 

amplitude for tunnelling between critical points. In a more accurate calculation some of the  previously 



zero energy p-form solutions which do not correspond to exact zero energy solutions, may be mapped to 

some of the  previously zero energy (p+1)-form solutions which do not correspond to exact zero 

energy solutions, by the operator dt, thus removing some of the zero energy degeneracy. 

In the Feynman Path Integral approach to quantum mechanics all the possible paths between critical points 

contribute to the tunnelling amplitude, weighted by the exponential of minus the action evaluated for the 

particular path. The first approximation to this tunnelling amplitude is the semi-classical W.K.B. 

approximation. In this approximation the classical limit, Planck’s constant  is taken, this is equivalent 

to the limit  in our case, so that only the contribution of the classical trajectory, which minimises the 

action, or path of steepest descent between critical points, is taken into account. 

Taking approximate zero energy states  and  localized near critical points A and B of Morse Index p 

and p+1 respectively.  will fall off like  in ascending along the path of steepest descent , 

from A to B, so that along this path the overlap between the states will be 

 

 

 

Summing over all the paths of steepest descent between A and B, gives 

 

 

 

 

where  equals 1 or 0 depending on the orientation of the path . 

Taking into account all critical points of Morse Index p+1, the action of dt on the p-form state , in this 

approximation is 

 

 

 

The states for which this expression cancels will remain zero energy singlets, while some previous 

approximately zero energy states may now form supersymmetry doublets under the action of this operator. 

As far as cohomology is concerned the factors of , which are the same along any path 

connecting A and B, may be dropped in the definition of the coboundary operator. Witten defines the 

coboundary operator , where 

 

 



whose action is completely determined by the orientation of paths of steepest descents between critical 

points. The adjoint of , the operator , relates to  in the W.K.B. approximation in a completely 

analogous way. Its definition is 

 

 

mapping p-forms to (p-1)-forms. For a state to still have zero energy in this approximation it must be 

annihilated both by the coboundary operator  and its adjoint. 

Calling the number of zero energy p-form states in the W.K.B. approximation ; the arguments relating to 

the Morse Numbers , and the Morse Inequalities follow for these numbers in exactly the same way. They 

must form upper bounds on the Betti Numbers of M 

 

 ,  

 

and must satisfy an analogous formula to the Strong Morse Inequalities 

 

 ,  

where . 

 

Witten conjectures that the  are in fact always equal to the Betti Numbers . In terms of the 

quantum mechanics view point this would seem a reasonable result, as degeneries tend to be removed by a 

first order tunnelling calculation. From the point of view of topology, however, this would be a remarkable 

refinement of Morse Theory. The critical points of a Morse Function give approximate information about 

the cohomology of a manifold; Witten aims through the properties of the critical points, plus the relative 

orientation of paths between critical points to gain exact knowledge of the cohomology of the manifold. 

This section will be illustrated by examples of Morse Functions on the 2-torus, T². 

 


